Global Mangrove Distribution, Aboveground Biomass, and Canopy Height

Simard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V. H., Castaneda-Moya, E., Thomas, N., & Van Der Stocken, T. (2019)

This dataset characterizes the global distribution, biomass, and canopy height of mangrove-forested wetlands based on remotely sensed and in situ field measurement data. Estimates of (1) mangrove aboveground biomass (AGB), (2) maximum canopy height (height of the tallest tree), and (3) basal-area weighted height (individual tree heights weighted in proportion to their basal area) for the nominal year 2000 were derived across a 30-meter resolution global mangrove ecotype extent map using remotely-sensed canopy height measurements and region-specific allometric models. Also provided are (4) in situ field measurement data for selected sites across a wide variety of forest structures (e.g., scrub, fringe, riverine and basin) in mangrove ecotypes of the global equatorial region. Within designated plots, selected trees were identified to species and diameter at breast height (DBH) and tree height was measured using a laser rangefinder or clinometer. Tree density (the number of stems) can be estimated for each plot and expressed per unit area. These data were used to derive plot-level allometry among AGB, basal area weighted height (Hba), and maximum canopy height (Hmax) and to validate the remotely sensed estimates. Spatially explicit maps of mangrove canopy height and AGB derived from space-borne remote sensing data and in situ measurements can be used to assess local-scale geophysical and environmental conditions that may regulate forest structure and carbon cycle dynamics. Maps revealed a wide range of canopy heights, including maximum values (> 62 m) that surpass maximum heights of other forest types.

Previous
Previous

Improved land monitoring to assess large-scale tree plantation expansion and trajectories in Northern Mozambique

Next
Next

Global declines in human‐driven mangrove loss